Sums across columns within a row, while accounting for nonmissingness. Specify the desired columns by passing their explicit column names or by passing a regular expression to matches the column names.

row_sum(
  d,
  columns_to_process = character(0),
  pattern = "",
  new_column_name = "row_sum",
  threshold_proportion = 0.75,
  nonmissing_count_name = NA_character_,
  verbose = FALSE
)

row_mean(
  d,
  columns_to_process = character(0),
  pattern = "",
  new_column_name = "row_mean",
  threshold_proportion = 0.75,
  nonmissing_count_name = NA_character_,
  verbose = FALSE
)

Arguments

d

The data.frame containing the values to sum. Required.

columns_to_process

A character vector containing the columns names to process (e.g., to average or to sum). If empty, pattern is used to select columns. Optional.

pattern

A regular expression pattern passed to base::grep() (with perl = TRUE). Optional

new_column_name

The name of the new column that represents the sum of the specified columns. Required.

threshold_proportion

Designates the minimum proportion of columns that have a nonmissing values (within each row) in order to return a sum. Required; defaults to to 0.75. In other words, by default, if less than 75% of the specified cells are missing within a row, the row sum will be NA.

nonmissing_count_name

If a non-NA value is passed, a second column will be added to d that contains the row's count of nonmissing items among the selected columns. Must be a valid column name. Optional.

verbose

a logical value to designate if extra information is displayed in the console, such as which columns are matched by pattern.

Value

The data.frame d, with the additional column containing the row sum. If a valid value is passed to nonmissing_count_name, a second column will be added as well.

Details

If the specified columns are all logicals or integers, the new column will be an integer. Otherwise the new column will be a double.

Author

Will Beasley

Examples

mtcars |>
  OuhscMunge::row_sum(
    columns_to_process = c("cyl", "disp", "vs", "carb"),
    new_column_name    = "engine_sum"
  )
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
#>                     engine_sum
#> Mazda RX4                170.0
#> Mazda RX4 Wag            170.0
#> Datsun 710               114.0
#> Hornet 4 Drive           266.0
#> Hornet Sportabout        370.0
#> Valiant                  233.0
#> Duster 360               372.0
#> Merc 240D                153.7
#> Merc 230                 147.8
#> Merc 280                 178.6
#> Merc 280C                178.6
#> Merc 450SE               286.8
#> Merc 450SL               286.8
#> Merc 450SLC              286.8
#> Cadillac Fleetwood       484.0
#> Lincoln Continental      472.0
#> Chrysler Imperial        452.0
#> Fiat 128                  84.7
#> Honda Civic               82.7
#> Toyota Corolla            77.1
#> Toyota Corona            126.1
#> Dodge Challenger         328.0
#> AMC Javelin              314.0
#> Camaro Z28               362.0
#> Pontiac Firebird         410.0
#> Fiat X1-9                 85.0
#> Porsche 914-2            126.3
#> Lotus Europa             102.1
#> Ford Pantera L           363.0
#> Ferrari Dino             157.0
#> Maserati Bora            317.0
#> Volvo 142E               128.0

mtcars |>
  OuhscMunge::row_sum(
    columns_to_process     = c("cyl", "disp", "vs", "carb"),
    new_column_name        = "engine_sum",
    nonmissing_count_name  = "engine_nonmissing_count"
  )
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
#>                     engine_sum engine_nonmissing_count
#> Mazda RX4                170.0                       4
#> Mazda RX4 Wag            170.0                       4
#> Datsun 710               114.0                       4
#> Hornet 4 Drive           266.0                       4
#> Hornet Sportabout        370.0                       4
#> Valiant                  233.0                       4
#> Duster 360               372.0                       4
#> Merc 240D                153.7                       4
#> Merc 230                 147.8                       4
#> Merc 280                 178.6                       4
#> Merc 280C                178.6                       4
#> Merc 450SE               286.8                       4
#> Merc 450SL               286.8                       4
#> Merc 450SLC              286.8                       4
#> Cadillac Fleetwood       484.0                       4
#> Lincoln Continental      472.0                       4
#> Chrysler Imperial        452.0                       4
#> Fiat 128                  84.7                       4
#> Honda Civic               82.7                       4
#> Toyota Corolla            77.1                       4
#> Toyota Corona            126.1                       4
#> Dodge Challenger         328.0                       4
#> AMC Javelin              314.0                       4
#> Camaro Z28               362.0                       4
#> Pontiac Firebird         410.0                       4
#> Fiat X1-9                 85.0                       4
#> Porsche 914-2            126.3                       4
#> Lotus Europa             102.1                       4
#> Ford Pantera L           363.0                       4
#> Ferrari Dino             157.0                       4
#> Maserati Bora            317.0                       4
#> Volvo 142E               128.0                       4

mtcars |>
  OuhscMunge::row_mean(
    columns_to_process     = c("cyl", "disp", "vs", "carb"),
    new_column_name        = "engine_mean",
    nonmissing_count_name  = "engine_nonmissing_count"
  )
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
#>                     engine_mean engine_nonmissing_count
#> Mazda RX4                42.500                       4
#> Mazda RX4 Wag            42.500                       4
#> Datsun 710               28.500                       4
#> Hornet 4 Drive           66.500                       4
#> Hornet Sportabout        92.500                       4
#> Valiant                  58.250                       4
#> Duster 360               93.000                       4
#> Merc 240D                38.425                       4
#> Merc 230                 36.950                       4
#> Merc 280                 44.650                       4
#> Merc 280C                44.650                       4
#> Merc 450SE               71.700                       4
#> Merc 450SL               71.700                       4
#> Merc 450SLC              71.700                       4
#> Cadillac Fleetwood      121.000                       4
#> Lincoln Continental     118.000                       4
#> Chrysler Imperial       113.000                       4
#> Fiat 128                 21.175                       4
#> Honda Civic              20.675                       4
#> Toyota Corolla           19.275                       4
#> Toyota Corona            31.525                       4
#> Dodge Challenger         82.000                       4
#> AMC Javelin              78.500                       4
#> Camaro Z28               90.500                       4
#> Pontiac Firebird        102.500                       4
#> Fiat X1-9                21.250                       4
#> Porsche 914-2            31.575                       4
#> Lotus Europa             25.525                       4
#> Ford Pantera L           90.750                       4
#> Ferrari Dino             39.250                       4
#> Maserati Bora            79.250                       4
#> Volvo 142E               32.000                       4

if (require(tidyr))
  tidyr::billboard |>
    OuhscMunge::row_sum(
      pattern               = "^wk\\d{1,2}$",
      new_column_name       = "week_sum",
      threshold_proportion  = .1,
      verbose               = TRUE
    ) |>
    dplyr::select(
      artist,
      date.entered,
      week_sum,
    )
#> Loading required package: tidyr
#> 
#> Attaching package: ‘tidyr’
#> The following object is masked from ‘package:magrittr’:
#> 
#>     extract
#> The following columns will be processed:
#> - wk1
#> - wk2
#> - wk3
#> - wk4
#> - wk5
#> - wk6
#> - wk7
#> - wk8
#> - wk9
#> - wk10
#> - wk11
#> - wk12
#> - wk13
#> - wk14
#> - wk15
#> - wk16
#> - wk17
#> - wk18
#> - wk19
#> - wk20
#> - wk21
#> - wk22
#> - wk23
#> - wk24
#> - wk25
#> - wk26
#> - wk27
#> - wk28
#> - wk29
#> - wk30
#> - wk31
#> - wk32
#> - wk33
#> - wk34
#> - wk35
#> - wk36
#> - wk37
#> - wk38
#> - wk39
#> - wk40
#> - wk41
#> - wk42
#> - wk43
#> - wk44
#> - wk45
#> - wk46
#> - wk47
#> - wk48
#> - wk49
#> - wk50
#> - wk51
#> - wk52
#> - wk53
#> - wk54
#> - wk55
#> - wk56
#> - wk57
#> - wk58
#> - wk59
#> - wk60
#> - wk61
#> - wk62
#> - wk63
#> - wk64
#> - wk65
#> - wk66
#> - wk67
#> - wk68
#> - wk69
#> - wk70
#> - wk71
#> - wk72
#> - wk73
#> - wk74
#> - wk75
#> - wk76
#> # A tibble: 317 × 3
#>    artist         date.entered week_sum
#>    <chr>          <date>          <dbl>
#>  1 2 Pac          2000-02-26         NA
#>  2 2Ge+her        2000-09-02         NA
#>  3 3 Doors Down   2000-04-08       1403
#>  4 3 Doors Down   2000-10-21       1342
#>  5 504 Boyz       2000-04-15       1012
#>  6 98^0           2000-08-19        753
#>  7 A*Teens        2000-07-08         NA
#>  8 Aaliyah        2000-01-29       1041
#>  9 Aaliyah        2000-03-18        533
#> 10 Adams, Yolanda 2000-08-26       1355
#> # ℹ 307 more rows

  tidyr::billboard |>
    OuhscMunge::row_sum(
      pattern               = "^wk\\d$",
      new_column_name       = "week_sum",
      verbose               = TRUE
    ) |>
    dplyr::select(
      artist,
      date.entered,
      week_sum,
    )
#> The following columns will be processed:
#> - wk1
#> - wk2
#> - wk3
#> - wk4
#> - wk5
#> - wk6
#> - wk7
#> - wk8
#> - wk9
#> # A tibble: 317 × 3
#>    artist         date.entered week_sum
#>    <chr>          <date>          <dbl>
#>  1 2 Pac          2000-02-26        598
#>  2 2Ge+her        2000-09-02         NA
#>  3 3 Doors Down   2000-04-08        567
#>  4 3 Doors Down   2000-10-21        601
#>  5 504 Boyz       2000-04-15        319
#>  6 98^0           2000-08-19        202
#>  7 A*Teens        2000-07-08         NA
#>  8 Aaliyah        2000-01-29        422
#>  9 Aaliyah        2000-03-18        259
#> 10 Adams, Yolanda 2000-08-26        606
#> # ℹ 307 more rows