Skip to main content
Collaborative Data Science Practices
Show table of contents
Table of contents
1
Introduction
2
Coding Principles
3
Architecture Principles
4
Prototypical R File
5
Prototypical SQL File
6
Prototypical Repository
7
Data at Rest
8
Patterns
9
Security & Private Data
10
Automation & Reproducibility
11
Scaling Up
12
Parallel Collaboration
13
Documentation
14
Style Guide
15
Publishing Results
16
Validation
17
Testing
18
Troubleshooting and Debugging
19
Workstation
20
Considerations when Selecting Tools
21
Growing a Team
22
Material for REDCap Users
23
Material for REDCap Developers
24
Material for REDCap Admins
Appendix
A
Git & GitHub
B
Regular Expressions
C
Snippets
D
Presentations
E
Scratch Pad of Loose Ideas
F
Example Dashboard
G
Example Chapter
H
Acknowledgements
I
References
View book source
17
Testing
17.1
Testing Functions
17.2
Validator
Benefits for Analysts
Benefits for Data Collectors
16
Validation
18
Troubleshooting and Debugging
On this page
17
Testing
17.1
Testing Functions
17.2
Validator
View source
Edit this page